Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mater Today Proc ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2233809

ABSTRACT

In the light of COVID-19 pandemic, a global shortage for Personnel Protective Equipment (PPE) led to the search for an alternative to fill the gap where additive manufacturing made necessary development of rapid design and adaptive filtering masks for local manufacturing using 3D printing to help the frontline workers. The review focuses on the utilization of antimicrobial materials in additive manufacturing with the use of bespoke design to facilitate and respond to the disruptions in the medical supply chain. Previous studies confirmed the age-old theory of copper as an antimicrobial material with contact killing properties. The antimicrobial properties of copper have been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. Combining the properties of copper in a PLA (Polylactic Acid) filament as a nano composite, Copper-3D facilitates the antimicrobial properties to any 3D printed object. Provided this flexibility of 3D printing, the use of masks designed distinctively based on the 3D scan of an individual's facial structures as an efficient Personnel Protective Equipment is also addressed. Additive manufacturing as a support to the shortage of medical devices and a responsive method to the disruption in the supply chain is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL